Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1219139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711299

RESUMO

Introduction: With social and economic development and the associated large-scale exploitation of natural resources, the number of slopes has significantly increased. As slope instability can lead to serious geological disasters, the ecological protection and reconstruction of slopes has become a hot topic of common global concern. Methods: In order to achieve scientific slope management and overcome the difficulty of maintaining slope greening in the long term, this study explored eight strategies (A, B, C, AB, AC, BC, ABC, CK), involving different patented mineral solubilizing microorganisms (MSMs), and analyzed the field application of active permanent greening (APG) based on MSMs. Results: The results revealed that MSMs significantly increased the content of effective metal ions and available nutrients in soil and enhanced soil enzyme activity. Among all strategies, strategy A showed significant superiority, with soil effective calcium, magnesium, potassium, nitrogen, phosphorus and organic matter contents increasing by 51.62%, 55.41%, 30.42%, 39.77%, 181.69% and 76.92%, respectively, while urease, sucrase and peroxidase activities increased by 89.59%, 74.68% and 85.30%. MSMs strongly promoted the growth of Amorpha. Strategy A showed the best performance, with plant seedling height, ground diameter, leaf area, root length, and root volume increasing by 95.75%, 47.78%, 124.14%, 108.83%, and 139. 86%, respectively. According to a comprehensive evaluation using the entropy-analysis hierarchy process, strategy A has great potential for application. The field test results verified that APG has significantly better greening performance than the traditional greening method, with high vegetation cover and stable soil layer. Discussion: The results of this study provide a reliable practical basis and technical reference for the development, promotion, and application of APG.

2.
Environ Sci Pollut Res Int ; 30(5): 11978-11993, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36103069

RESUMO

Dendrobium is a valuable traditional Chinese herb that contains active ingredients such as polysaccharides and alkaloids that have anti-aging, antioxidant, and immunomodulating effects. The appropriate distribution range of Dendrobium should be predicted from the perspective of ecological niche theory in order to preserve and utilize medicinal plant resources. In this study, Dendrobium nobile, Dendrobium officinale, and Dendrobium moniliforme were selected to predict the potential suitable distributions and ecological niche shifts. A comparison of 19 environmental variables of the three Dendrobium species revealed three climatic factors that differed significantly when the species were compared two at a time. The principal component analysis was carried out in order to screen seven climatic factors for ecological niche shift analysis. All three Dendrobium species were found to have a very similar ecological niche, but with a relatively small range of variability regarding certain climatic factors. Finally, the current and future suitable areas for these three Dendrobium species in China were predicted using the MaxEnt model and ArcGIS using the two representative concentration pathways (RCP 2.6 and 8.5). Overall, the analysis of the climatic factors' comparisons, niche shift, and current and future suitable areas of these three Dendrobium species provides a basis for medicinal plant resource conservation and utilization, and our methods could be applied to the study of other similar valuable medicinal plants.


Assuntos
Alcaloides , Dendrobium , Plantas Medicinais , Mudança Climática , China
3.
Front Plant Sci ; 14: 1303102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38223289

RESUMO

Introduction: The stability of exposed slopes is prone to natural disasters, seriously threatening socio-economic and human security. Through years of exploration and research, we proposed an active permanent greening (APG) method based on patented mineral solubilizing microorganisms (MSMs) as an improvement over the traditional greening method. Methods: In this study, we selected two MSMs (Bacillus thuringiensis and Gongronella butleri) and a plant species (Lolium perenne L.) set up six treatments (T1, T2, T3, T4, T5, and T6) to investigate the effectiveness of the MSMs and their combinations with the plant species on the soil stability using APG method. Results: We noted that both MSMs and the plant species significantly improved soil aggregate stability and organic matter content. Of all the treatments, the T1 treatment exhibited better results, with soil aggregate stability and organic matter content increased to 45.63% and 137.57%, respectively, compared to the control. Soil stability was significant positively correlated with macroaggregate content and negatively with microaggregates. Using structural equation modeling analysis, we further evaluated the mechanism underpinning the influence of organic matter content and fractions on the content of each graded agglomerates. The analysis showed that the macroaggregate content was influenced by the presence of the plant species, primarily realized by altering the content of organic matter and aromatic and amide compounds in the agglomerates, whereas the microaggregate content was influenced by the addition of MSMs, primarily realized by the content of organic matter and polysaccharide compounds. Overall, we observed that the effect of the co-action of MSMs and the plant species was significantly better than that of using MSMs or the plant species alone. Discussion: The findings of this study provide reliable data and theoretical support for the development and practical application of the APG method to gradually develop and improve the new greening approach.

4.
Front Pharmacol ; 12: 737576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899295

RESUMO

Forsythiae Fructus (FF), the dry fruit of Forsythia suspensa (Thunb.) Vahl, has a long history of use in traditional Chinese Medicine for its heat-clearing and detoxifying properties. It possesses clinical therapeutic effects and biological functions showing efficacy in handling different diseases. To investigate the FF differences in Henan, Shanxi, and Shaanxi in August and October, the surface morphology, mid-infrared and near-infrared spectrums, and HPLC were analyzed. Concurrently, the anti-inflammatory and antioxidant effects on LPS-induced J774A.1 cells were evaluated by western blot and RT-qPCR. The results showed that FF from different Harvest Seasons and Regions are provided with different microstructures and mid-infrared and near-infrared spectrums, and the levels of forsythiaside A and phillyrin of FF from Shanxi in August and phillygenin of FF from Shaanxi in August were the highest. Meanwhile, FF from Shanxi and Shaanxi in August markedly reduced the levels of inflammatory cytokines and mediators (TNF-α, IL-1ß, NF-κB, and iNOS) and the protein expression levels of phosphorylated total IKKα/ß and nuclear NF-κB. In August, SXFF and SAXFF also promoted the mRNA expression levels of HO-1 and NQO1 and the protein expression levels of HO-1 and nuclear Nrf2 and suppressed the protein expression levels of KEAP1. Spearman correlation analysis showed that phillygenin had a strong correlation with the protein expression on LPS-induced J774A.1 cells. In summary, our results showed that FF from harvest seasons and regions contributed to the distinct differences in microstructure, the mid-infrared and near-infrared spectrums, and compound content. More importantly, FF from Shanxi and Shaanxi in August showed marked anti-inflammatory and antioxidant activities, but with some differences, which may be because of different contents of phillygenin and phillyrin of lignans in FF.

5.
Front Plant Sci ; 12: 738769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712259

RESUMO

Spartina alterniflora is a perennial herb native to the American Atlantic coast and is the dominant plant in coastal intertidal wetlands. Since its introduction to China in 1979, it has quickly spread along the coast and has caused various hazards. To control the further spread of S. alterniflora in China, we first reconstructed the history of the spread of S. alterniflora in its invasion and origin countries. We found that S. alterniflora spreads from the central coast to both sides of the coast in China, while it spreads from the west coast to the east coast in America. Furthermore, by comparing 19 environmental variables of S. alterniflora in its invasion and origin countries, it was found that S. alterniflora is more and more adaptable to the high temperature and dry environment in the invasion country. Finally, we predicted the suitable areas for this species in China and America using the maximum entropy (MaxEnt) model and ArcGIS. Overall, through analysis on the dynamic and trend of environmental characteristics during the invasion of S. alterniflora and predicting its suitable area in the invasion area, it guides preventing its reintroduction and preventing its further spread of the species has been found. It has reference significance for studying other similar alien plants and essential enlightening relevance to its invasion and spread in similar areas.

6.
Front Plant Sci ; 12: 652500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968109

RESUMO

Pine wilt disease is a devastating forest disease caused by the pinewood nematode Bursaphelenchus xylophilus, which has been listed as the object of quarantine in China. Climate change influences species and may exacerbate the risk of forest diseases, such as the pine wilt disease. The maximum entropy (MaxEnt) model was used in this study to identify the current and potential distribution and habitat suitability of three pine species and B. xylophilus in China. Further, the potential distribution was modeled using the current (1970-2000) and the projected (2050 and 2070) climate data based on two representative concentration pathways (RCP 2.6 and RCP 8.5), and fairly robust prediction results were obtained. Our model identified that the area south of the Yangtze River in China was the most severely affected place by pine wilt disease, and the eastern foothills of the Tibetan Plateau acted as a geographical barrier to pest distribution. Bioclimatic variables related to temperature influenced pine trees' distribution, while those related to precipitation affected B. xylophilus's distribution. In the future, the suitable area of B. xylophilus will continue to increase; the shifts in the center of gravity of the suitable habitats of the three pine species and B. xylophilus will be different under climate change. The area ideal for pine trees will migrate slightly northward under RCP 8.5. The pine species will continue to face B. xylophilus threat in 2050 and 2070 under the two distinct climate change scenarios. Therefore, we should plan appropriate measures to prevent its expansion. Predicting the distribution of pine species and the impact of climate change on forest diseases is critical for controlling the pests according to local conditions. Thus, the MaxEnt model proposed in this study can be potentially used to forecast the species distribution and disease risks and provide guidance for the timely prevention and management of B. xylophilus.

7.
Oxid Med Cell Longev ; 2020: 1241894, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802257

RESUMO

There is a bidirectional relationship between inflammatory bowel disease (IBD) and depression/anxiety. Emerging evidences indicate that the liver may be involved in microbiota-gut-brain axis. This experiment focused on the role of melatonin in regulating the gut microbiota and explores its mechanism on dextran sulphate sodium- (DSS-) induced neuroinflammation and liver injury. Long-term DSS-treatment increased lipopolysaccharide (LPS), proinflammation cytokines IL-1ß and TNF-α, and gut leak in rats, breaking blood-brain barrier and overactivated astrocytes and microglia. Ultimately, the rats showed depression-like behavior, including reduction of sucrose preference and central time in open field test and elevation of immobility time in a forced swimming test. Oral administration with melatonin alleviated neuroinflammation and depression-like behaviors. However, melatonin supplementation did not decrease the level of LPS but increase short-chain fatty acid (SCFA) production to protect DSS-induced neuroinflammation. Additionally, western blotting analysis suggested that signaling pathways farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF 15) in gut and apoptosis signal-regulating kinase 1 (ASK1) in the liver overactivated in DSS-treated rats, indicating liver metabolic disorder. Supplementation with melatonin markedly inhibited the activation of these two signaling pathways and its downstream p38. As for the gut microbiota, we found that immune response- and SCFA production-related microbiota, like Lactobacillus and Clostridium significantly increased, while bile salt hydrolase activity-related microbiota, like Streptococcus and Enterococcus, significantly decreased after melatonin supplementation. These altered microbiota were consistent with the alleviation of neuroinflammation and metabolic disorder. Taken together, our findings suggest melatonin contributes to reshape gut microbiota and improves inflammatory processes in the hippocampus (HPC) and metabolic disorders in the liver of DSS rats.


Assuntos
Depressores do Sistema Nervoso Central/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Inflamação/tratamento farmacológico , Melatonina/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Animais , Depressores do Sistema Nervoso Central/farmacologia , Masculino , Melatonina/farmacologia , Ratos
8.
Sci Total Environ ; 723: 138079, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32222506

RESUMO

There are a large number of abandoned mining areas in China, where external-soil spray seeding is a common technique used to assist with the restoration of these areas. However, the soil component of external-soil spray seeding is deficient, and they are prone to collapse, which complicates ecological restoration. In this study, we added a mineral-solubilizing microbial strain to an external-soil spray seeding substrate in Robinia pseudoacacia and Lespedeza bicolor pots, which were monitored from December 2018 to November 2019. We investigated their root growth and root tensile properties, as well as root-reinforced soil shear strength. The results revealed that the addition of the microbial strain in the substrate improved root growth of Robinia pseudoacacia. The root-reinforced soil shear strength, tensile force and strength were also strengthened by the added microbial strain. Although the growth rate of Robinia pseudoacacia was faster than that of Lespedeza bicolor, the shear strength of the root-reinforced Robinia pseudoacacia soil was lower than that of the Lespedeza bicolor root-reinforced soil of the same diameter. Finally, compared with the cohesion, the change in the friction angle is relatively small, and differences in cohesion resulted in shear strength changes under the same treatment. Our results suggested that the addition of a mineral-solubilizing microbial strain to the external-soil spray seeding substrate could help plants strengthen the soil and positively enhance its effects. These results might also enrich the existing data on the effects of mineral-solubilizing microbial strains on plant roots, while guiding further studies toward improving the efficacy of external-soil spray seeding technologies.


Assuntos
Robinia , Solo , China , Minerais , Raízes de Plantas , Microbiologia do Solo
9.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013237

RESUMO

Dendrobium is widely used in traditional Chinese medicine, which contains many kinds of active ingredients. In recent years, many Dendrobium transcriptomes have been sequenced. Hence, weighted gene co-expression network analysis (WGCNA) was used with the gene expression profiles of active ingredients to identify the modules and genes that may associate with particular species and tissues. Three kinds of Dendrobium species and three tissues were sampled for RNA-seq to generate a high-quality, full-length transcriptome database. Based on significant changes in gene expression, we constructed co-expression networks and revealed 19 gene modules. Among them, four modules with properties correlating to active ingredients regulation and biosynthesis, and several hub genes were selected for further functional investigation. This is the first time the WGCNA method has been used to analyze Dendrobium transcriptome data. Further excavation of the gene module information will help us to further study the role and significance of key genes, key signaling pathways, and regulatory mechanisms between genes on the occurrence and development of medicinal components of Dendrobium.


Assuntos
Dendrobium/genética , Proteínas de Plantas/genética , Transcriptoma , Alcaloides/análise , Alcaloides/metabolismo , Análise por Conglomerados , Dendrobium/química , Dendrobium/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genômica , Medicina Tradicional Chinesa , Proteínas de Plantas/metabolismo , Polissacarídeos/análise , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...